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Chapter 2

Structural Properties of Networks

over Time

A fundamental question in dynamic network analysis is to determine how the graph-theoretic properties

of a network are changing over time when the network is not completely visible. A number of diverse

questions depend on our ability to accurately measure structural changes in real networks: for example,

is the average number of hops between Internet routers increasing or decreasing as the Internet grows,

and does the pattern of collaborations between publishing scientists indicate that scientists are forming an

increasingly tighter-connected social network? These issues are important in computer network analysis as

well as physics and sociology, and in general, any domain where a physical system can be represented as a

partially observable graph structured process that generates a changing network over time. In these cases,

the change in the structure of the physical system between any two time points is quantified by the change

in some graph-theoretic measure evaluated at those points.

There are at least two reasons to look for trends in the time evolution of various graph measures.

• Generative network models. Since the true dynamical processes that generate real dynamic network

datasets are too complex to model, a line of research aims to develop simple dynamical processes

that can approximate the true process by generating networks with a given trend over time in some

graph measure [Leskovec et al., 2007, Akoglu et al., 2008, Akoglu and Faloutsos, 2009, Bonato et al.,

2009, Chakrabarti et al., 2010, Du et al., 2010]. These dynamical processes can very generally be

viewed as probabilistic algorithms driven by uniform random noise that convert one graph into another.

Inferring the parameters of these processes from data is generally intractable, so a common method of

justifying various dynamical graph generation models is to show that they reproduce temporal trends

in measures comparable to an average temporal trend found in multiple real datasets. Naturally, this

presumes that the temporal trends measured from empirical data were accurate and not artifacts of

the data sampling process, an issue that we show is not trivial.

• Scientific datasets. In scientific datasets, a sudden fundamental change in the structure of a network

can sometimes be detected by tracking a correspondingly large change in an appropriate graph measure.

In animal association networks from ecology, for example, differences in network measures are used to
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determine behavioral differences between species [Sundaresan et al., 2007].

In an ideal world, we would simply obtain a sequence of snapshots of a graph structured process over time

and periodically measure properties of interest in order to determine a trend. In the real world, however, our

observational capabilities are severely limited in terms of how far back in time datasets reach, how complete

each snapshot is, and the mechanisms by which network data is collected. In this chapter, we examine how

these issues are tackled by surveying the growing literature on dynamic network measurements. Several

recent empirical studies suggest that the structures of a variety of otherwise disparate real networks are

evolving in similar ways [Leskovec et al., 2005,Ahn et al., 2007,Menezes et al., 2009]. We describe in detail

the experimental methodology used to reach these conclusions, and investigate how sensitive they are to

various kinds of missing data.

This chapter is organized as follows. In the next section, we present a methodology survey describing

typical procedures for measuring graphical properties of a network over time, as well as a characterization

of dynamic network datasets into two broad classes: interaction networks, and citation networks, depending

on the nature and permanence of interactions (edges). Section 2.2 presents a literature review and summary

of published empirical results on the graphical properties of real dynamic networks over time. All the

published results on networks that we survey can be classified as either interaction or citation networks. In

order to assess the significance of the many common temporal trends in network properties (e.g., , decreasing

average shortest path length over time), we experimentally analyze whether these trends necessarily reflect

the reality of the underlying system in the presence of missing data and observational limitations in the data

collection process. Section 2.3 deals with citation networks, and Section 2.4 deals with the more common

class of interaction networks. In Section 2.5, we summarize our findings and list some suggestions for future

research.

2.1 Networks, measurement, and error

Dynamic networks are explicit representations of the change in the structure of a physical system over

time. These systems are generally complex real-world phenomena that can be modeled as a set of uniquely

identifiable entities interacting with each other over time. The entities can act independently of each other,

and the interactions between them can occur in arbitrary ways. The global structure of which entities have

interacted with which other entities can therefore be a complex network-like structure that (presumably)

evolves over time. Quantifying the change in the structure of such a system over time is the first step in

analyzing a dynamic network.

The most immediate way of quantifying the change in a dynamic network between two time points is to

simply measure its structure at both time points and compute the difference. There are numerous ways to

measure a graph, but in a very general sense that covers the most popular methods, a measure M can be

thought of as a function from a graph to a real number.

M : G 7→ R where G = (V,E)

Some simple measures include the number of nodes and edges in a graph, the average shortest path length

between all pairs of connected nodes, and the largest eigenvalue of the adjacency matrix. These are static
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measures that operate on a single graph; an example of a measure that operates on a graph through time

is the graph edit distance measure between consecutive graphs used in anomaly detection in computer

networks [Bunke, 2000]. Given a dynamic network dataset, one could simply construct a graph of all

interactions up to a given time point, measure the graph, and subsequently produce a time series of measure

values by repeating the process, which would then presumably characterize the change in the structure of

the system.

A number of assumptions need to hold before this is true. Clearly, the measure M that is used must

adequately represent true change in the physical system, at least with respect to the reason for measuring

the dynamic network. For example, if we want to quantify the change in a computer network to study the

effect of decentralized routing protocols, the average shortest path length might be a good measure, whereas

the raw number of nodes might not be. Secondly, if there are sampling and incomplete data issues in the

dataset (as is the case with almost all empirical time-series datasets), then the chosen measure must be

robust to sampling errors. In particular, if we are to measure a dynamic network at successive time points

in the presence of sampling error, then the resultant time series of measure values should be similar to the

true underlying time series, at least qualitatively.

There also exist two common methods for aggregating dynamic network data into a single graph that can

be measured. For example, given a dynamic network dataset, we might have identified two time points at

which we wish to measure the structure of the underlying system. Both aggregation methods can be applied

to the same data under certain conditions, and yield very different results because they make different

assumptions about the data. Adding to the subtleties of choosing an aggregation method, we have also

identified two different classes of network data that require different treatment. This distinction between

aggregation methods and network data classes does not appear to have been explicitly made, particularly in

terms of measurement biases involved in mismatching aggregation methods, graph measures, and network

data classes. We start this analysis with a description of network data classes in the next subsection, and

network aggregation methods in Section 2.1.2.

2.1.1 Network data classes

All the dynamic network datasets described in the literature that we will later review in Section 2.2 fall into

one of two categories depending on the type of physical system being modeled: interaction networks and

citation networks. The overall characteristics of each class are as follows.

• (Interaction networks) An edge, identified by the labels of its adjacent nodes, can appear at multiple

timesteps. Examples include email networks built from email headers [Leskovec et al., 2005, Diesner

and Carley, 2005], where people continually send emails to each other over time, and similar networks

built from phone records [Nanavati et al., 2006], logs from physical proximity sensors [Eubank et al.,

2004, Eagle and Pentland, 2006], and co-authorship of published scientific articles [Newman, 2001c,

Barabási et al., 2002, Leskovec et al., 2005]. Each edge in the dynamic network dataset is therefore

a record of a single instance of an interaction between nodes, out of many other possible instances

at different times. Network structure is determined through the proxy of interactions, which can be

regulated by an independent dynamic process.

• (Citation networks) Unlike interaction networks, citation networks only grow in size over time with the
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addition of new nodes and edges, and each edge appears only once in the observation stream. Thus, in

a dynamic network dataset, the appearance of an edge at time t implies that the underlying physical

system grew by at least one edge at time t. Their name comes from the canonical example of the

directed network of citations between scientific papers; once a scientific paper is published, its citations

never change, and thus each edge in the dynamic network appears only once over all of time [Bilke

and Peterson, 2001, Nerur et al., 2005, Leskovec et al., 2007]. Note that interaction networks where

edges and nodes are deleted very infrequently relative to growth can also be seen as citation networks

at short times. This covers some types of online social network data where the rate of node and edge

addition far outstrips its removal, to the point where the online ‘friendship’ networks can be seen as

citation networks [Kumar et al., 2006,Krishnamurthy et al., 2008]. For the same reason, it also includes

domains such as blog inter-linking networks [Adar and Adamic, 2005].

The distinction between the two classes is important when we use network measures to represent the

change in the underlying physical system. In particular, when a citation network dataset contains a record

of edge (u, v) at time t, we know that the underlying physical system has increased in size by at least one

edge. However, with interaction networks, particularly when we do not have the entire temporal history of

the network, we cannot tell if the record of edge (u, v) at time t represents true growth in the underlying

system, or is just the re-occurrence of an interaction that had also occurred some time before. In other words,

there is a process that generates interactions along a growing network structure, and using interactions as

a proxy for network structure requires that we account for the sampling error induced by the dynamics of

the interactions, particularly at short times and without full temporal history. This is closely tied to the

aggregation method (or lack thereof) used to assemble interaction data into a time series of graphs, which

is the topic of the next subsection.

2.1.2 Network aggregation methods

We can view citation and interaction network data types through the lens of a sampling process (generally

involved in data collection) on a true underlying network that is growing over time. The sampling process

generates a sequence of graphs drawn from the true underlying process, which we call the observations. In

the case of interaction networks, the sampling process reveals a set of interactions each time a group of

entities interacts. In the case of citation networks, observations consist solely of (subsets of) new edges and

vertices that are added to the network, with the constraint that the same edge must not appear twice. These

samples are generally revealed over time, starting from an arbitrary time relative to the underlying process,

from which we must infer both an initial structure as well as any change in it.

The earliest approach to network data was to treat the underlying process as being in a steady state with

respect to some graph measure M .

Definition 2.1.1. (Steady state) A physical system is in equilibrium or a steady state with respect to a

graph theoretic measure M if the partial derivative of M measured on the system with respect to time is

zero.
∂M

∂t
= 0

Vertices and edges may therefore be added to or deleted from the system, but the dynamic behavior of a
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Figure 2.1: Example of a true underlying network, a sequence of observations of it starting at t = 1, and
growing and dynamic interaction representations of the observations. Edge thickness represents edge weight.

measure of interest M is independent of time.1 If we assume that an underlying system is in a steady state

with respect to measure M , and assuming a consistent sampling process, we can simply let the observation

sequence converge to a large enough graph and assume that M measured on this graph is representative of

the true value of M . These steady state and consistency assumptions are the foundation of static network

analysis, which approximates partially stationary dynamic processes as large networks. Static network

analysis has produced a large number of important advances in network theory, such as the observations

that real-world networks tend to have heavily skewed degree distributions and low average pairwise shortest

path lengths [Albert and Barabási, 2002, Newman, 2003, Boccaletti et al., 2006]. A number of studies also

analyze dynamical aspects of the sampling process, such as how long typical systems must be observed till

various graph theoretic properties converge to limiting values [Latapy and Magnien, 2006], and how sensitive

measured properties are to different types of sampling error [Costenbader and Valente, 2003,Kossinets, 2006].

There has also been interest in the dynamic behavior of some measure M of the underlying system, with

the implicit assumption that the underlying system is not in a steady state with respect to M [Barabási et al.,

2002, Leskovec et al., 2005]. Intuitively, the steady state assumption might not appear to be appropriate

for systems as large and chaotic as the Internet (for example). In this case, observations are aggregated

over time, either as a growing network or a fully dynamic network, into a single graph that is measured

with M at fixed time intervals. Figure 2.1 depicts how a sampling process on the true underlying network

generates observations, depending on whether the underlying network is a citation or interaction network.

These samples of network structure are aggregated using the growing network method to yield a time series

of graphs with measure values P1, ..., Pn. We describe each aggregation method in more detail below.

Definition 2.1.2. (Growing network) Observations of the physical system are made at discrete timesteps.

1For example, a growing k-regular graph, one one in which every vertex has exactly k adjacent edges, is in equilibrium with
respect to its degree distribution or any statistic of it, but not necessarily with respect to other measures.

6



Each observation is accumulated into a single growing graph, which is measured at fixed time intervals.

Aggregating in this manner implicitly assumes that the underlying process can be represented as a citation

network. Let G be the true, underlying network of the physical system being modeled, which is only partially

observable and growing over time with the addition of new vertices and edges (by definition, vertices and

edges are never removed in a citation network). Since G is growing over time, we let its structure at time t

be denoted by an element in the sequence 〈G〉.

〈G〉 = 〈G0, ...〉 where Gt = (Vt,Et)

where Gt is the complete network structure at time t, consisting of a set of labeled vertices Vt = {vi : vi ∈ N}
and a set of directed or undirected edges Et = {(vi,vj) : vi,vj ∈ Vt}. Since vertices and edges are only

added to the system, we have a monotone property on the vertex and edge sets over time.

Vt ⊆ Vt+1 (2.1)

Et ⊆ Et+1

Since the true underlying network is only partially observable, we instead obtain finite samples of its graph

structure over time, called the observation sequence 〈O〉, starting at some arbitrary time t0 > 0.

〈O〉 = 〈Gt0 , ..., Gtn〉 where Gti = (Vti , Eti), Vti ⊆ Vti , Eti ⊆ Eti

Due to limitations of the observation process, each observed graph Gt may be a small fraction of the size

of the physical system at that point in time Gt, i.e., |Vt| ≪ |Vt| and |Et| ≪ |Et|. The growing network

aggregation method approximates Gt by aggregating all samples from the start of observations t0 up to the

current timestep into a single growing network 〈G+〉:

〈G+〉 = 〈G+
t0 , ..., G

+
tn〉 where G+

t = (

tn
⋃

i=t0

Vi,

tn
⋃

i=t0

Ei)

Any graph measure M can then be measured on G+
t at fixed intervals, yielding a time-series that (presumably)

approximates the trend of the same property on the underlying network 〈G〉.

A key assumption in the growing network methodology in practice is that the aggregated growing network

at any point in time is a good approximation of the underlying physical system, including at the (necessarily)

arbitrarily chosen time of the first observation t0. Particularly, the assumption that we can accurately track

trends in the underlying process, either quantitatively or qualitatively, by measuring an aggregated graph

of observations periodically requires that the measured trend accurately track the trend in the underlying

system.

Definition 2.1.3. (Fully dynamic network) A fully dynamic network approach treats the underlying system

as an interaction network. Observations are aggregated within successive, non-overlapping intervals of time,

and the graph obtained from each interval is measured independently of the other intervals. When the

interval of time is fixed, it is called the window of the aggregation. It can be seen as a growing network

where vertices and edges are removed after a fixed period of time (the window) unless they appear again
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within the window. Thus, depending on the relative rates of vertex and edge addition and removal, a dynamic

network may be structurally growing, in equilibrium, or shrinking. The underlying network 〈G〉 no longer

necessarily has the monotonicity property of growing networks (Equation 2.1).

A variant of this approach weights each edge with a time-decaying function, to emphasize the impact of

more recent changes in graph structure. This is usually practiced in one of two related ways:

1. Weight each edge by the amount of time that has elapsed since it was last seen, and use algorithms

that take the weight of each edge into account (e.g., [Sharan and Neville, 2007,Acar et al., 2009,Barrat

et al., 2004]).

2. Remove edges from the network after a certain period of time if they have not appeared again, where

the amount of time is determined by a decay function (e.g., [Kossinets and Watts, 2006]).

The issue of time-decaying relationships in social networks has also received attention in sociology, such as

the formulation of sociologically meaningful decay functions suggested by data [Burt, 2000].

A practical issue with the fully dynamic aggregation method is that it presumes knowledge of an appro-

priate window length to aggregate observations over. In practice, this is usually determined by taking some

‘natural’ quantization of the dataset, such as a window length of a year for scientific publication data, but

this is difficult to determine for some datasets (e.g., animal association data). Furthermore, some measures

M might be sensitive to the window length, in effect showing trends that are a function of the quantization

window. However, more rigorous methods are needed to determine a good aggregation window for a dataset,

and a complementary set of approaches attempts to find a time aggregation that minimizes some notion of

error in measured dynamic trends [Sun et al., 2007,Sulo et al., 2010]. The growing network method has the

practical advantage of not requiring any additional parameters, and we focus more on this method for the

remainder of this chapter.

To illustrate the different situations that might call for growing networks over dynamic networks, con-

sider the analysis of e-mail transmission records to deduce the structure of the underlying association net-

work [Shetty and Adibi, 2005, Kossinets and Watts, 2006, Leskovec et al., 2007]. Treating each day as a

timestep, the observation corresponds to the graph structure of e-mails that are sent and received on a

given day. This has definite meaning, as we can investigate the time stream for periodic or other temporal

patterns [Lahiri and Berger-Wolf, 2008, Lahiri and Berger-Wolf, 2010, Sun et al., 2007, Acar et al., 2009].

On the other hand, consider the discovery of Autonomous Systems (AS) routes on the Internet through

the use of traceroute probes and similar methods [Andersen et al., 2002,Chen et al., 2002,Vázquez et al.,

2002,Leskovec et al., 2007]. The temporal sequence of samples is a product of the observation technique and

has no inherent meaning to the object of interest (the AS topology). Graph theoretic analysis of the sampled

graph would be more meaningful than, for example, looking for periodic patterns. However, since AS routes

are frequently deleted in addition to being added, growing networks might not be the best representation.

Table 2.1 illustrates how the same physical system can be represented as different types of networks,

often starting with the same initial data.

2.1.3 Network measures

A number of graph theoretic measures are used to characterize the structure networks. In this subsection,

we survey the measures that are commonly used for characterizing the graphical properties of networks over
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System Static Growing Fully dynamic
Co-auth. [Newman, 2001c] [Barabási et al., 2002] [Moody, 2004]
E-mail [Ebel et al., 2002] [Leskovec et al., 2007] [Kossinets and Watts, 2006]a

Online [Mislove et al., 2007] [Holme et al., 2004] [Hu and Wang, 2009]
a Time-weighted dynamic network.

Table 2.1: EXAMPLES OF PHYSICAL SYSTEMS PAIRED WITH DIFFERENT NETWORK MODELS.

time. We describe these measures to demonstrate that they are non-trivial and diverse, and to motivate the

form of randomized sensitivity analysis that we propose in later sections, which is agnostic to the chosen

measure.

In addition to classical graph theoretic measures like the average and maximum shortest path lengths

between vertices, sociologists have developed a variety of vertex centrality measures to assess the importance

of individual vertices within the larger network [Wasserman and Faust, 1994], physicists and graph theoreti-

cians have proposed looking at distributions of fundamental properties [Newman, 2003,Albert and Barabási,

2002,Erdös and Rényi, 1959], and computer science has seen the wide-scale adoption of ranking techniques

like PageRank [Brin and Page, 1998, Langville et al., 2008] and tensor factorization [Sun et al., 2007, Acar

et al., 2009] for analysis, and algorithmic questions posed on real networks, such as routing [Kleinberg, 2000].

We focus on three basic categories of network properties that have been widely used to characterize

networks that change over time: (1) connectivity, in terms of statistics of the distribution of shortest path

lengths between all pairs of vertices, (2) the density of the network, both local and global, in terms of

the relative numbers of vertices and edges, and (3) spectral properties of the graph’s adjacency matrix or

transformations of it.

Connectivity

The distance between two vertices u and v in a graph is generally the length of the shortest path between

the vertices, i.e., the minimum number of edges that need to be traversed to connect u to v. Let σuv be the

length of the shortest path between vertices u and v, where σuv = ∞ if there is no path between u and v

(note that σuv and σvu are not necessarily equal for directed networks).

Definition 2.1.4. The connectivity of a network can be expressed in terms of summary statistics of the

pairwise shortest path length distribution, i.e., the distribution of σuv for all distinct, ordered vertex pairs

in a directed network, and for all distinct unordered vertex pairs in an undirected network. In the following

definitions, let k = 1 for directed networks and k = 2 for undirected networks.

l =
k

V (V − 1)

∑

u,v∈V

σuv (Average path length [West, 2001])

l
−1

=
k

V (V − 1)

∑

u,v∈V

1

σuv
(Efficiency [Latora and Marchiori, 2001])

dmax = max
u,v∈V

σuv (Diameter [West, 2001])

d90 ≈ argi[P (σuv ≤ i) = 0.9] (Effective diameter [Leskovec et al., 2005])

The distribution of all-pairs shortest path lengths between vertices is only well defined for (strongly)
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connected graphs, since σuv = ∞ when there is no path between u and v. In order to handle disconnected

graphs, the average path length distribution is generally only computed over pairs of vertices that are reach-

able from each other. The efficiency measure introduced by Latora and Marchiori [Latora and Marchiori,

2001] is another way to overcome this problem by considering the inverse of the shortest path length, so that

when σuv = ∞, then l−1
uv = 0. A third method is to only compute shortest paths between vertices in the

largest (strongly) connected component.

The diameter of a graph, although unambiguously defined in graph theory [Bollobás, 1998,West, 2001],

has a slightly different meaning in other disciplines, particularly physics. For example, in their seminal

paper on estimating the ‘diameter’ of the World Wide Web, Albert et al. [Albert et al., 1999] are referring

to the average shortest path length and not the maximum shortest path length, as is standard in graph

theory. In computer science, Leskovec et al. [Leskovec et al., 2005, Leskovec et al., 2007] and subsequently

Ahn et al. [Ahn et al., 2007] use a smoothed notion of the conventional graph-theoretic definition of diameter

– the 90th percentile of the shortest path length distribution – to estimate the length of the ‘almost’ longest

shortest path length in a network. The distinction between these properties is particularly important when

considering trends over time, since it is possible to construct examples where, say, the average path length

is increasing while the diameter or effective diameter is decreasing.2

Density

Irrespective of the structure of a graph, it is sometimes useful to quantify the relative numbers of vertices

and edges to get some sense of the ‘crowdedness’ of the network, either at a global or a local scale. Al-

though density measures are trivial to compute, the ratio of nodes to edges can be particularly informative

of structure of the network. For example, a classic paper by Erdös and Rényishowed that the connectiv-

ity properties of random graphs undergo an abrupt phase change at certain critical densities that can be

analytically computed [Erdös and Rényi, 1959].

Definition 2.1.5. The density of edges in a network G = (V,E) can be quantified in the following ways.

In the following definitions, let N(v) be the set of neighbors of vertex v, i.e., the set of vertices that are

adjacent to vertex u, and let k = 1 for directed networks and k = 2 for undirected networks.

D =
k|E|

|V |(|V | − 1)
(Density [Bollobás, 1998,West, 2001])

N =
1

|V |
∑

v∈V

|N(v)| (Average degree)

=
D

|V | − 1

CC1 =
1

|V |
∑

v∈V

k|M(v)|
|N(v)|(|N(v)| − 1)

(Clust. coefficient [Watts and Strogatz, 1998])

where M(v) is the set of edges between the neighbors of v:

M(v) = {(i, j) : i, j ∈ N(v) and (i, j) ∈ E}
2As a real world example of such a case, see the early stages of the evolution of the Cyworld network [Ahn et al., 2007].
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Figure 2.2: DPL plot from a patent citation dataset on doubly logarithmic and linear scales, illustrating
the difference between regression assumptions. The black line is a fit of the Multiplicative DPL equation,
and the gray line is a fit of the Additive DPL equation. The inset shows standardized residuals of both fits
against a y = 0 line, revealing errors that are unlikely to be independent.

and CC1 is only computed for vertices with N(v) > 1.

The clustering coefficient measure proposed by Watts and Strogatz [Watts and Strogatz, 1998] is a mea-

sure of the local density of edges around a particular vertex. The clustering coefficient of the whole network

is usually expressed as the mean clustering coefficient computed over all vertices. Soffer and Vazquez [Soffer

and Vázquez, 2005] show that the clustering coefficient of a vertex, as defined above, is inherently corre-

lated with the degree of the vertex, since high-degree vertices will have more possible edges between them,

and a generally lower clustering coefficient. They propose an alternative definition that removes this bias.

However, to the best of our knowledge, it has not been widely used.

Finally, a property that has attracted considerable interest in computer science is the Densification Power

Law (DPL), first described in a pair of seminal papers [Leskovec et al., 2005,Leskovec et al., 2007], examined

in a number of subsequent studies [Shi et al., 2007, Menezes et al., 2009, Latapy and Magnien, 2008, Pallis

et al., 2009], and even used as the basis of a network sampling algorithm [Leskovec and Faloutsos, 2006].

Definition 2.1.6. An evolving network that obeys a Densification Power Law (DPL) contains a number of

edges E that, at any point in time, is related to the number of vertices V in a power function of the form:

E(t) = k · V (t)α (2.2)

where 1 < α < 2 is called the densification exponent.

The DPL is a statement about the relative number of vertices and edges over time. Note that the area of

fitting power-law distributions to the degrees of vertices measured in a dataset has been well studied [Clauset

et al., 2009,Goldstein et al., 2004], but in the case of the DPL, we are not dealing directly with a statistical

distribution, but rather a power function of the number of edges to the number of nodes that is invariant

over time. A practical issue, however, is that there are at least two ways to fit a power function to empirical
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data, each of which requires different assumptions about the underlying relationship, and each of which leads

to a different statistical formalization of Definition 2.1.6:

1. Linear regression on log-transformed data. This is the regression method that has commonly been

used in the literature, including in the original definition [Leskovec et al., 2005]. The DPL function

is assumed to have a multiplicative, centered, i.i.d., normally distributed error term ǫ [Seber and Lee,

2003], specifically:

E(t) = k · V (t)α · ǫ

2. Nonlinear regression. This method assumes a more common additive error term, and requires the use

of an algorithm like nonlinear least-squares [Ryan, 2008]:

E(t) = k · V (t)α + ǫ

Figure 2.2 illustrates this distinction on a dataset of U.S. patent citations [Hall et al., 2001] (see [Leskovec

et al., 2005] for details on preprocessing). The densification exponent of α = 1.34 obtained using linear

regression is significantly different from the nonlinear regression fit of α = 1.81, with the magnitude of

the standardized residuals shown in the inset (i.e., differences between the data and fitted curve, centered

around the mean difference and divided by the standard deviation in differences). Later in this chapter, we

show that each form of DPL exhibits different sensitivities to the same missing data, making it important

to qualify the regression technique (and thus statistical noise model) used.

Spectral properties

Spectral graph theory uses the algebraic properties of a graph’s adjacency matrix, or transformations of it,

to reveal an astonishing amount of information about the structure of the graph [Biggs, 1993,Chung, 1997].

A number of diverse questions can be answered by examining either the set of eigenvalues of the graph’s

(possibly transformed) adjacency matrix, or specific eigenvectors associated with them. For example, the

eigenvector corresponding to the largest eigenvalue is the basis of a number of vertex importance ranking

algorithms [Bonacich and Lloyd, 2001, Perra and Fortunato, 2008]. The popular PageRank algorithm can

be seen as a variant of this method that uses a transformation of the adjacency matrix [Brin and Page,

1998]. We briefly describe some interesting spectral graph properties, focusing on eigenvalues as a global

characterization of the graph rather than on eigenvectors as characterizations of individuals vertices.

Definition 2.1.7. The spectrum of a matrix is the set of its eigenvalues. The spectral properties of a graph

G = (V,E) depend upon which matrix representation is chosen for it. Starting with the basic adjacency

matrix of a graph, the combinatorial Laplacian matrix is defined as follows, where N(v) is the degree of

vertex v ∈ V :

Luv =











N(v) : u = v

−1 : (u, v) ∈ E

0 : otherwise

We denote λ1 ≤ ... ≤ λV as the ordered set of eigenvalues of an adjacency matrix A, where V is the number

of vertices in the graph and λV is the principal eigenvalue. Similarly, the spectrum of the Laplacian matrix

is denoted µ1 ≤ ... ≤ µV .
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The following are some properties of the spectra of each matrix representation of a graph.

1. (Adjacency) The diameter of the graph dmax is less than the number of distinct eigenvalues [West,

2001].

2. (Adjacency) For processes spreading on graphs, such as viruses in computer networks, the epidemic

threshold is a critical rate of infection beyond which a virus can become an epidemic. The epidemic

threshold can be estimated by the quantity 1/λV [Wang et al., 2003].

3. (Adjacency) In a scale-free graph, the maximum degree grows as
√
V , so the principal eigenvalue can

be expected to grow as λV ∼ V 1/4 [Farkas et al., 2001].

4. (Laplacian) The number of zero eigenvalues is equal to the number of connected components.

5. (Laplacian) The largest eigenvalue is bounded by twice the maximum degree [Almendral and Dı́az-

Guilera, 2007]:

µV ≤ 2Nmax

6. (Laplacian) The diameter of an undirected graph dmax is bounded by the following expression involving

the largest and second-smallest eigenvalue µ2 [Chung et al., 1994]:

dmax ≤
⌊

cosh−1(V − 1)

cosh−1(µV +µ2

µV −µ2

)

⌋

+ 1,

Spectral properties have rarely been use to characterize the time evolution of networks, perhaps because

interpreting temporal trends in eigenvalues is less intuitive than interpreting trends in classical graph theoretic

properties like density and diameter. Plotting the spectrum of a graph can be used as an effective tool to

summarize the structure of the graph [Banerjee and Jost, 2009], but robust and intuitive methods for tracking

this summary over time are an open problem.

2.2 Dynamic properties of real networks

In the previous section, we outlined network data classes, aggregation methods, and graph measures used to

characterize network structure. Using this framework, we now survey the literature to summarize commonly

reported temporal properties of real dynamic network datasets. We also aim to classify the experimental

methodology of each study into the conceptual framework described in the previous section, in an attempt

to characterize what the de-facto experimental procedure is. Reported empirical results are categorized by

graph-theoretic properties and the type of network dataset being studied, and then presented in increasing

chronological order of year of publication. Section 2.2.1 describes the literature in terms of global and

local density measures in the graph, whereas Section 2.2.2 describes distance measurements in terms of the

distribution of shortest paths over time. Due to the ordering of this section, the networks of each study are

described in most detail in Section 2.2.1.
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2.2.1 Global and local density

We first examine three measures related to the global and local density of a network: the conventional

definition of density D (the ratio of the number of edges to the maximum possible number of edges), the

average degree N , and the average clustering coefficient CC1. Of these, CC1 measures the local density of

edges centered at each vertex in the network, on average, as specified in Definition 2.1.5.

Bibliographic networks

Barabási et al. [Barabási et al., 2002] analyzed the time evolution of two co-authorship datasets consisting

of publications in Neuroscience and Mathematics. They found that the average degree N in both datasets

are monotonically increasing over time, although the rate of increase is faster in Neuroscience than in

Mathematics. They speculate that this is because of the differences in collaboration culture between the

fields. The average clustering coefficient is also decreasing in both datasets, although this could possibly be

explained by the degree-correlation bias in the CC measure [Soffer and Vázquez, 2005].

Elmacioglu and Lee [Elmacioglu and Lee, 2005] presented an analysis of co-authorship in the database

research community by aggregating co-authorship information from 100 “hand-picked” publication venues

listed in the DBLP database [Ley, 2002]. We obtained two trends related to density from their analysis.

The first is the average degree over time considering the DBLP database as a dynamic network, expressed

as the average number of collaborators per author each year. This trend is shown to be increasing, and is a

lower bound on the trend in a growing version of the same dataset. The second trend in the paper is a slow,

linear increase in the clustering coefficient over time computed in the growing (cumulative) version of the

dataset. The apparent disagreement with the trend found by Barabási et al. in other co-authorship datasets

could possibly be explained by the fact that Elmacioglu and Lee only compute the clustering coefficient for

vertices in the largest connected component of the network, whereas Barabási et al. consider all vertices in

the network. At the end of the observation period, less than 60% of all vertices in Elmacioglu and Lee’s

dataset are included in the giant component.

Menezes et al. [Menezes et al., 2009] analyzed the structure and evolution of research collaborations

in computer science from co-authorship data. They manually selected academic institutions from three

geographical regions – 16 in the United States and Canada (Ca-US), 6 in Europe (Fr-Sw-UK), and 8 in

Brazil (Br) – and extracted names of faculty from departmental homepages, and co-authorship data for those

faculty from DBLP. In the Brazil and Europe networks, the clustering coefficient appears to be decreasing

at a uniform rate. However, the North American network appears to be largely stable, subject to regular

fluctuations. This is in contrast to the fraction of vertices in the giant component, where both Brazil and

Europe exhibit sharp increases.

Online social networks

Holme et al. [Holme et al., 2004] obtained an almost exhaustive history of user interactions in Pussokram,

an online dating social network popular in Sweden. This network is somewhat unusual because it contains

full temporal information about multiple modes of user interactions. Users can, for example, list each other

as ‘friends’, or write private or public messages to each other, or ‘flirt’ with one another, and each type of

interaction generates a different network. We report the authors’ results on the aggregate network of all
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interactions and on friendship links alone, since the other trends are very similar. All interaction types yield

networks that exhibit an initially increasing average degree, but in all cases, the trend appears to be quickly

converging to a constant. In the case of friendship links, the average degree is approximately constant for

more than 400 out of 500 days in the observation period. The authors note that this appears to agree with

sociological constraints, such as empirical findings that maximum social network sizes in humans appear to

be bounded [Hill and Dunbar, 2003].

Local density in the Pussokram network also exhibits some interesting trends. The authors compute both

directed and undirected clustering coefficient in the network over time, and show that the network of all

interactions exhibits a decreasing clustering coefficient, similar to earlier findings in bibliographic networks

by Barabási et al. [Barabási et al., 2002]. The network consisting only of friendship links, however, displays

a non-monotonic trend, and it is hard to draw any conclusions about long-term behavior. The authors note

that since Pussokram is primarily a dating site, conventional social norms for introducing one’s friends to

each other, and thus increasing local density, might not apply.

Kumar et al. [Kumar et al., 2006] obtained complete temporal information on the evolution of two online

social networks - Yahoo 360 and Flickr, both of which are treated as growing networks. A key finding, which

can perhaps be generalized to other online social networks where complete temporal information is available,

is that there appear to be multiple regimes of growth. The authors note that these stages correspond to

an “initial euphoria” peak as early adopters sign up for the service, a subsequent decline of the initial

enthusiasm, followed by steady “organic growth”. Both networks exhibit these phenomena in terms of the

average degree of nodes, with the long-term trend appearing to be an increasing one.

Beyene et al. [Beyene et al., 2008] examine the structure of a trust network, built from binary feedback

ratings on the online auction site eBay. These ratings are assigned to users by other users on the completion

of a transaction, and can be either positive or negative, although they are generally found to be positive.

Beyene et al. show that the average degree in this network increases almost linearly with time, from 1999 to

2005. Note that the data was collected by crawling user profiles on the eBay site, which brings up issues of

incomplete data, and consequently, the missing past.

Hu et al. [Hu and Wang, 2009] analyze the temporal evolution of Wealink, an online social network

popular in China, as a dynamic network. Perhaps the most interesting feature of their dataset is the S-

shaped trend, resembling a logistic function, of both the number of vertices and edges over time. Since the

dataset is an exhaustive history of the evolution of the network, the authors speculate that the sharp increase

in the number of vertices and edges corresponds to a sudden burst of popularity, when the membership of

the network grew from under 10,000 vertices to over 200,000 in less than 5 months out of a 27 month

history, similar to earlier findings by Kumar et al. [Kumar et al., 2006]. Both the global density D and the

average clustering coefficient CC1 appear to decrease towards a constant once the growth of the network

has stabilized. A fit to the logistic function suggests that the number of vertices has an asymptotic limit of

V ∼ 224, 000 and E ∼ 272, 100.

Subsets of the World Wide Web

Buriol et al. [Buriol et al., 2006] analyzed the evolution of the structure of hyperlinks between articles

in Wikipedia, an online, publicly-editable encyclopedia. Using snapshots of the link structure that model

Wikipedia as a dynamic network, they find that the average out-degree Nout is increasing at a constant rate
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of approximately one new out-link every 100 days. The average clustering coefficient remains approximately

constant in the last year of network evolution, after periods of non-monotonicity. This is somewhat surprising,

since it implies that the local density around vertices remains constant even though the average number of

neighbors increases.

Shi et al. [Shi et al., 2007] analyzed four temporal snapshots of a partial crawl of blogspace released as

part of the TREC Blog-Track 2006 dataset. They report that that the average degree N of the network

increases from 1.5 to 2.657 over a period of 40 days. Similarly, CC1 increases monotonically from 0.034 to

0.052 over the same period.

Latapy and Magnien [Latapy and Magnien, 2008] analyze a crawl of the .uk WWW domain, where

each hyperlink is labeled with the time that it is discovered. Note that the motivation for the study was

not to study the evolution of the network, but to determine how large a network sample should be in

order for network properties to stabilize. In order to achieve this, the authors add edges sequentially to

a network in increasing order of the timestamp of the edge. Thus, their methodology essentially builds a

growing network, allowing us to compare their results, at least qualitatively, to studies that explicitly analyze

network properties over time. Although the timestamp on the hyperlinks in the WWW dataset correspond

to the link’s discovery time and not the link’s creation time, we include the datasets in this survey since

the same methodology has been used in other papers [Leskovec et al., 2007]. The average degree grows

quickly as a function of the number of nodes added to the network, but the density appears to decrease

smoothly and the clustering coefficient is extremely non-monotonic. The Web dataset also seems to show

sharp discontinuities in time, perhaps implying problems in the underlying crawling process. Thus, the

trends in this particular dataset should not be given too much importance.

Internet Routers and Autonomous Systems

Dhamdhere and Dovrolis [Dhamdhere and Dovrolis, 2008] analyze the structure and evolution of a specific

type of link between Autonomous Systems, namely ‘customer-provider’ (CP) or ‘paid transit’ links instead

of all links. They perform extensive filtering and smoothing on the dataset, and show that the limited nature

of AS datasets nonetheless allows reasonable estimation of the topology of CP links, but not all links. The

average degree N over CP links is shown to be steadily increasing over time.

Dynamic Interaction Networks

Kossinets and Watts [Kossinets and Watts, 2006] analyzed a dynamic network of e-mail communications

between university students, staff, and faculty. Since e-mail constitutes a dynamic interaction network, they

used decay windows of various lengths in order to smooth network structure. Specifically, each edge between

vertices i and j is weighted at time t according to the following function3:

wij =

√
mijmji

τ

where τ is the length of a chosen smoothing time window, and mij is the number of messages sent from

i to j in the period (t − τ, t]. For vertices i and j, if wij > 0 at time t, then the edge (i, j) exists in the

network at that time. This introduces a form of edge decay over time, since e-mails allow the observation of

3Found in the supporting online material for [Kossinets and Watts, 2006], available at www.sciencemag.org.
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the creation of links, but not of their dissolution. It also implements the intuitive idea that an e-mail should

not constitute a social tie in a network indefinitely.

Using this edge decay scheme and window sizes of τ = 30, 60, 90 days, the authors find that the average

degree N is approximately constant during the semester, decreasing sharply during the semester break and

in summer. Similarly, the average clustering coefficient CC appears to be largely in equilibrium during the

semesters, its trend only increasing slightly during summer. The drops in average degree during summer,

for example, can be explained by students not being on campus. Although the authors were only able to

obtain data for one academic year, their results raise a number of interesting points: namely, that a single,

global smoothing parameter appears to show that the network is largely in equilibrium during the semesters.

Whether this phenomenon could be observed in other networks using a similar smoothing mechanism is an

open question.

Pallis et al. [Pallis et al., 2009] analyze the structure of dynamic vehicular ad-hoc networks, i.e., temporary

wireless networks created when specially-equipped vehicles on open roads are within transmission range of

each other. Their study is notable because it does not use actual interaction data, but rather the results

of a large-scale realistic traffic simulation [Raney et al., 2002, Naumov et al., 2006]. The authors simulate

traffic in the center of the city of Zurich, Switzerland for 3 hours in the morning rush period, and do not

use any form of edge decay or sliding window, as in Kossinets and Watts [Kossinets and Watts, 2006]. Since

the time evolution of the network reflects instantaneous traffic patterns, it is not surprising that the average

degree increases gradually as traffic starts to build, and then falls off. The clustering coefficient, on the other

hand, remains constant throughout the simulation period, making this an example of a graph where local

and global density appear to uncorrelated.

Pallis et al. [Pallis et al., 2009] also illustrate a somewhat unusual usage of the DPL relationship in their

analysis of communication links in dynamic vehicular ad-hoc networks. We have mentioned that the authors

do not use any form of edge decay or smoothing, resulting in an instantaneous picture of communication

links at each timestep in the evolution of the network. The authors fit the Multiplicative DPL to the model

and find a densification exponent of α = 1.77, although the interpretation of this value is difficult.

17



Year Reference Network Type Category N D CC
2002 [Barabási et al., 2002] Mathematics Biblio. growing increasing - decreasing

Neuroscience Biblio. growing increasing - decreasing
2004 [Holme et al., 2004] Pussokram: All Online growing increasinga - decreasing

Pussokram: Friends Online growing constant - b

2004 [Park et al., 2004] RouteViews AS dynamic increasingb - increasing
Extended AS dynamic - - -

2005 [Elmacioglu and Lee, 2005] DBLP-DB Biblio. growing increasingc - increasingb

2006 [Kossinets and Watts, 2006] University Email interaction periodicd - periodicd

2006 [Buriol et al., 2006] Wikipedia WWW dynamic increasing - constantb

2006 [Kumar et al., 2006] Flickr Online growing increasingb - -
Yahoo 360 Online growing increasingb - -

2007 [Shi et al., 2007] TREC WWW dynamic increasing - increasing
2008 [Dhamdhere and Dovrolis, 2008] AS-CP AS dynamic increasingb - -
2008 [Latapy and Magnien, 2008] INET Router growing increasing b increasinga,b

eDonkey P2P growing increasing decreasinga,b decreasingb

Metrosec Router growing constantb decreasinga,b decreasinga,b

2008 [Beyene et al., 2008] eBay Online growing increasing - -
2009 [Menezes et al., 2009] Brazil Biblio. growing - - decreasing

Ca-US Biblio. growing - - decreasing
Fr-Sw-UK Biblio. growing - - constantb

2009 [Hu and Wang, 2009] Wealink Online dynamic - constantb constantb

2009 [Pallis et al., 2009] Vehicle traffic Ad-hoc interaction b - constant
a Trend suggests convergence to asymptote.
b Trend exhibits non-monotonic behavior.
c Trend measured using fully dynamic network aggregation.
d Uses smoothing, sliding windows, or edge decay with fully dynamic network aggregation.

Table 2.2: OVERVIEW OF LOCAL AND GLOBAL DENSITY MEASUREMENTS. NOTE THAT THESE ARE QUALITATIVE ASSESS-
MENTS BASED ON GRAPHICAL DATA PRESENTED IN EACH PAPER.
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Year Reference Network Type Category l dmax d90
2002 [Barabási et al., 2002] Mathematics Biblio. growing decreasinga - -

Neuroscience Biblio. growing decreasinga - -
2003 [Nascimento et al., 2003] SIGMOD Biblio. growing b constantb -
2004 [Holme et al., 2004] Pussokram: All Online growing decreasinga - -

Pussokram: Friends Online growing increasingb - -
2004 [Park et al., 2004] RouteViews AS dynamic decreasing - -

Extended AS dynamic b - -
2005 [Elmacioglu and Lee, 2005] DBLP-DB Biblio. growing constantb - -
2006 [Kumar et al., 2006] Flickr Online growing constantb - increasingb

Yahoo 360 Online growing decreasingb - decreasingb

2006 [Kossinets and Watts, 2006] University Email interaction periodicd - -
2007 [Ahn et al., 2007] Cyworld Online dynamic decreasingb - decreasingb

2008 [Dhamdhere and Dovrolis, 2008] AS-CP AS dynamic constantb - -
2008 [Latapy and Magnien, 2008] INET Router growing decreasinga decreasinga -

eDonkey P2P growing decreasinga decreasing -
Metrosec Router growing constant constant -

2009 [Menezes et al., 2009] Brazil Biblio. growing b - -
Ca-US Biblio. growing decreasing - -
Fr-Sw-UK Biblio. growing b - -

2009 [Hu and Wang, 2009] Wealink Online dynamic decreasingab constantb -
2009 [Pallis et al., 2009] Vehicle traffic Ad-hoc interaction noisy - -

a Trend suggests convergence to asymptote.
b Trend exhibits non-monotonic behavior.
c Trend measured using fully dynamic network aggregation.
d Uses smoothing, sliding windows, or edge decay with fully dynamic network aggregation.

Table 2.3: OVERVIEW OF AVERAGE AND MAXIMUM DISTANCE MEASUREMENTS. NOTE THAT THESE ARE QUALITATIVE
ASSESSMENTS BASED ON GRAPHICAL DATA PRESENTED IN EACH PAPER.
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Year Reference Network Category Type Time span Data Miss. past
2002 [Barabási et al., 2002] Mathematics Biblio. growing 1991-1998 8 yes

Neuroscience Biblio. growing 1991-1998 8 yes
2003 [Nascimento et al., 2003] SIGMOD Biblio. growing 1975-2002 28 yes
2004 [Holme et al., 2004] Pussokram Online growing 512 days large yes
2004 [Park et al., 2004] RouteViews AS dynamic 1997-2002 large yes

Extended AS dynamic ∼7 weeks 9 yes
2005 [Elmacioglu and Lee, 2005] DBLP-DB Biblio. growing 1968-2003 36 yes
2005 [Leskovec et al., 2005] arXiv Biblio. growing 1993-2003 124 yes

Patents Citation growing 1975-1999 25 yes
AS AS dynamic 1997-2000 735 yes
Affiliation Biblio. growing 1992-2002 10 yes

2006 [Kossinets and Watts, 2006] University Email interaction ∼1 year large yes
2006 [Buriol et al., 2006] Wikipedia Web dynamic 2002-2006 17 yes
2006 [Kumar et al., 2006] Flickr Online growing 100 weeks 100 no

Yahoo 360 Online growing 40 weeks 40 no
2007 [Ahn et al., 2007] Cyworld Online dynamic 2002-2006 8 yes
2007 [Shi et al., 2007] TREC Blogs growing 40 days 4 yes
2007 [Leskovec et al., 2007] Email Email growing 18 months 18 yes

IMDB Actors-Movies General growing 1890-2004 114 no
2008 [Latapy and Magnien, 2008] INET Router growing 16 months large yes

eDonkey P2P growing 47 hours large no
Metrosec Router growing 8 days large yes

2008 [Dhamdhere and Dovrolis, 2008] AS-CP AS dynamic 1998-2007 40 yes
2008 [Huang et al., 2008] CiteSeer Biblio. growing 1980-2005 25 yes
2008 [Beyene et al., 2008] eBay Online growing 1999-2005 7 yes
2009 [Menezes et al., 2009] Brazil Biblio. growing 1994-2006 13 yes

Ca-US Biblio. growing 1994-2006 13 yes
Fr-Sw-UK Biblio. growing 1994-2006 13 yes

2009 [Hu and Wang, 2009] Wealink Online dynamic 2005-2007 27 no
2009 [Dong et al., 2009] China Airport dynamic 1983-2006 3 (?)
2009 [Pallis et al., 2009] Vehicle traffic Ad-hoc interaction 3 hours large no

Table 2.4: AN OVERVIEW OF THE CHARACTERISTICS OF EVOLVING NETWORK DATASETS.
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2.2.2 Connectivity

Bibliographic networks

Barabási et al. [Barabási et al., 2002] were among the first to find a decreasing average shortest path length l

in a growing network, which does not agree with network growth models like Preferential Attachment [New-

man, 2001b]. For both the Mathematics and Neuroscience datasets that they examine, l is decreasing and

apparently converging to an asymptote. The authors note that a longer observation interval might indicate

that l approaches a stationary value, but the relative novelty of co-authorship datasets at the time of publi-

cation resulted in just 8 data points, with each representing an additional year of cumulative co-authorships.

Note that although the authors refer to ‘diameter’, the only quantity studied is the average shortest path

length l.

Nascimento et al. [Nascimento et al., 2003] analyzed the co-authorship graph of the SIGMOD conference

as a growing network. The average path length in the largest connected component in the network varies

considerably over the years, but eventually settles down into what appears to be a decreasing trend. We

have not listed any trend in Table 2.3 because of the extremely short time period that any trend is visible at

all. The authors note that computing path lengths within the largest component only has its caveats: until

1980, only 16 authors were in the largest connected component, out of the 1,683 that eventually appear. The

trend is l is therefore predictably noisy. The authors also report that dmax in the network has been constant

at a value of 15 between 1996 and 2002.

Elmacioglu and Lee [Elmacioglu and Lee, 2005] analyzed the growing network of publications in the

database research community, constructed from a set of manually selected publication venues reported to

the DBLP database. They report the value of the average shortest path length l over time, computed over

all reachable pairs of vertices in the network. After an initial increasing burst, the trend in l appears to

stabilize to a constant value around 6 from approximately 1989 to 2003. While it is certainly possible that

database research was particularly energized between 1973 and 1983, resulting in an infusion of new authors

and sharply increasing l, it is also possible that this spike is an artifact caused by missing past issues, or

known limitations in the indexing process of DBLP for early data [Ley, 2002]. However, the fact that l

appears to stabilize for a number of years would suggest that the network has reached an equilibrium.

Menezes et al. [Menezes et al., 2009] analyzed three co-authorship networks constructed from faculty

publications at manually selected universities in North American, Europe, and Brazil. The average shortest

path length l in the North American network displays a relatively uniform decreasing trend, but both the

Brazilian and European networks exhibit sharp increases by doubling between 1998 and 2001. Following

these sharp increases, the Brazilian network appears to settle into a decreasing trend, whereas the European

network continues increasing. It should be noted that in the Brazilian research network, the doubling of l is

correlated with a sharp increase in the fraction of nodes in the giant component.

Online social networks

In their analysis of the Pussokram online dating social network, Holme et al. [Holme et al., 2004] find

different trends for networks built from different types of interactions. Note that although the authors have

complete history of the network, registered users of a different service had their accounts “automatically

transferred to pussokram.com” on its inception [Holme et al., 2004], which implies that this dataset also
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has a version of the missing past issue. The authors report different trends in the average shortest path

length l, computed only within the largest giant component as opposed to between all pairs of reachable

nodes, depending on the type of interaction used to build the network. The aggregate network built from all

possible user interactions, for example, shows a decreasing trend in l, appearing to converge to a constant,

but the network built only from friendship links displays an increasing trend after a very brief period of

initial decrease. One possibility is that each type of user interaction on the social network is governed by a

different process, which results in different trends in each network, but it is also possible that the differences

are caused by disparities in the amount of data on each type of interaction.

Kumar et al. [Kumar et al., 2006] analyzed social networks of the Yahoo 360 and Flickr services as growing

networks. Of these, the Flickr network is somewhat unusual in terms of both the l and d90 measures. In the

“organic growth” phase, it is difficult to discern a long-term trend in either measure from graphical data.

Although the authors state that both measures decrease over time, there appears to be a slight, monotonic

increase in both measures for approximately the last 30 weeks out of 100. The Yahoo 360 network also

exhibits noisy trends, although the long-term trend in both l and d90 appear to be decreasing. Both these

networks are exception because complete temporal information is available for every network-altering activity.

They also illustrate the problems associated with characterizing the properties of real networks as simple,

monotonic trends.

Ahn et al. [Ahn et al., 2007] present an analysis of the evolution of friendship links in Cyworld, an online

social network popular in South Korea. Although they claim to have obtained the complete topology of the

network directly from the service provider, the amount of temporal information is limited to about 42% of

the data. Thus, the missing past issue is a consideration in the temporal analysis of this dataset. The authors

find that the average shortest path length l increases almost linearly for the first three and a half years of

data, but then gradually starts to drop. The effective diameter d90, on the other hand, stays approximately

constant during the early period, before dropping off sharply and almost converging to the l trend. Note that

the drop in both l and d90, and particularly the reversal of the trend in l, coincides with a sharp increase in

the number of nodes in the network, which could indicate a change in the evolution dynamics of the network

caused by perhaps some sort of external event or marketing effort. In either case, it reinforces the need to

consider the underlying processes reflected in the dataset.

Hu et al. [Hu and Wang, 2009] note that a complete temporal history of the Wealink online social network

exhibits non-monotonic behavior in both the average shortest path length l as well as the diameter d, i.e., the

maximum shortest path length. However, the network underwent a rapid and extremely pronounced burst

of growth, after which network properties seem to stabilize. The long-term trend in l appears to be slowly

decreasing, whereas the diameter d stays constant. As Leskovec et al. [Leskovec et al., 2005] point out, the

diameter is extremely sensitive to outlier structures, so the effective diameter d90 or ‘almost’ longest path

might follow a different trend.

Internet Routers and Autonomous Systems

In their analysis of the evolution of CP links in Autonomous Systems, Dhamdhere and Dovrolis [Dhamdhere

and Dovrolis, 2008] show that the average shortest path length l has remained approximately constant over

the last 9 years.

Dhamdhere and Dovrolis [Dhamdhere and Dovrolis, 2008] analyze the structure and evolution of a specific
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type of link between Autonomous Systems, namely ‘customer-provider’ (CP) or ‘paid transit’ links instead

of all links. They perform extensive filtering and smoothing on the dataset, and show that the limited nature

of AS datasets nonetheless allows reasonable estimation of the topology of CP links, but not all links. The

average degree N over CP links is shown to be steadily increasing over time.

Dynamic Interaction Networks

Kossinets and Watts [Kossinets and Watts, 2006] analyzed a university’s e-mail records for one academic

year as a smoothed dynamic interaction network, which we have previously described in Section 2.2.1.

The authors report two interesting findings. The first is that with smoothing windows of 60 and 90 days,

the average shortest path length l stays constant, except after the onset of summer, when it rises. This

implies that the network is in equilibrium until the summer, when presumably a large fraction of the student

population leaves campus and uses e-mail less frequently. The second finding of interest is that for the shortest

smoothing window of 30 days, intended to capture fast-changing dynamics, there is a strong correlation

between the fraction of vertices in the largest component and the average shortest path length l with the

largest component. The first phenomenon can again be explained by its occurrence during semester breaks,

but the correlation between l and the size of the giant component raises the question of the underlying process

responsible for the increase or decrease in l in other studies that compute l within the largest component

only.

2.2.3 Summary

In conclusion, empirical evidence seems to suggest the following common trends in real networks, as measured

using the growing network methodology:

1. The average shortest path length is decreasing over time, often appearing to converge to a fixed value.

2. The effective diameter decreases over time.

3. The average degree grows over time, apparently without a bound.

In the next two sections, we investigate how sensitive these trends might be to various kinds of sampling

error. The next section deals with citation-type networks, and the subsequent section with interaction-type

networks.

2.3 Sensitivity of measured trends in citation networks

Recall that citation networks grow over time with the addition of nodes and edges, and that each individual

edge can only appear once in the timestream, to represent true growth in the underlying system. When

the growing network method is used to aggregate observations of a citation network, an implicit assumption

is that every aggregated observation is representative of the underlying system at that point in time, with

respect to a measure M , i.e., that the magnitude of change in the underlying system from time t1 to time

t2 is proportionally represented in a change in measure M from t1 to t2, and vice versa.

There is, however, a condition under which this assumption does not hold: when the dataset does not

contain a full temporal history of the underlying process. This is called a missing past, and a version of
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it has been briefly described before in [Barabási et al., 2002] and [Leskovec et al., 2005]. Assume that a

physical system is continuously in a state of flux, but that the observations in a citation network dataset of it

necessarily start at an arbitrary time t0 > 0. Furthermore, assume that due to limitations in the observation

process, the partial picture we have of the underlying system at time t0, with respect to measure M , is

incomplete. Since individual edges are only observed once in a citation network’s lifetime, we will never

discover the existence of edges that occurred before time t0.

However, the same is generally not true for discovering vertices that existed before time t0. When a new

vertex joins the network and links to a vertex that existed before t0, the older vertex is ‘re-discovered’ and

can incorrectly be presumed to be a new vertex. We call this phenomenon vertex re-dicovery, and it can

sometimes be controlled with additional metadata. For example, Leskovec et al. [Leskovec et al., 2007] use

a patent citation dataset where the time that each node was created is explicitly recorded, eliminating any

vertices for which they do not have a creation time. However, when this information is not available, each

apparently new vertex can affect a measure M by a significant amount, increasing the measurement error

between the true and observed networks. In some cases, as we will show, this error can progressively alter

trends in some measures over time, suggesting change in the underlying network in a manner that is not

actually happening. This is the first source of error in dynamic network measurements that we analyze.

In addition to vertex re-discovery affecting graph measurements, a second source of error is simply the

structure of the missing past graph. Even assuming that the measurement process is perfect and accurately

records all vertex and edge additions in the observation stream, the unobserved temporal history of the

network contains a missing past graph of unknown structure. The true change in the underlying system is

determined by the structure of this missing past graph in relation to the actual observations. Unfortunately,

this missing data graph looks like is difficult to determine, in general, for real datasets.

2.3.1 Assessing sensitivity

The central question of this section is whether the errors introduced by the processes just mentioned are

significant enough to be of concern. Given a dataset and a measure M , the difficulty of assessing the

sensitivity of a temporal trend in M is that we would require the structure of the missing past network in

order to do so. However, a number of stochastic models of growing networks have already been developed

that allow us to generate presumably realistic, continuously growing, citation networks [Chakrabarti et al.,

2010]. This allows us to conduct a systematic study of the effects of various amounts of missing past

on network measurements by using simulations of these models to generate data. The diversity of network

growth models in the literature means that we can systematically study a reasonably large class of dynamical

systems.

We use a simulation setup where a network growth model is used to generate a synthetic dynamic network

dataset with known properties. We designate this as the ground truth network. By censoring the initial

portion of the synthetic network timeline, we can simulate both growth and vertex re-discovery without

modifying the network growth model. The independent parameter of the simulation (beyond the parameters

of individual network growth models) is the amount of data to censor, which has a well-defined meaning,

and is the primary phenomenon we are interested in. Ideally, the missing past effect would be small and the

graph properties we study would converge to their true values quickly, or at least yield qualitatively similar

trends over time.
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There have been two prior attempts, to the best of our knowledge, to investigate the impact of missing

past data on network trends over time when using the growing network aggregation method. This is in

contrast to the many studies described in Section 2.2 that simply use the growing network method under

the same conditions. In 2002, Barabási et al. described a supplementary experiment assessing the effect

of missing past on the average shortest path length over time, in their seminal paper on co-authorship

networks [Barabási et al., 2002]. Our simulation setup in this section is very similar to theirs, but we

systematically study several citation network generating processes, graph measures, and amounts of missing

past data.

The second experiment was performed in 2007 by Leskovec et al., who use a subtly different definition

than Barabási et al. of what constitutes the missing past. Namely, they only consider a limited form of the

missing past in citation networks: “citations to [vertices] that predate our earliest recorded time” [Leskovec

et al., 2007, pg.17]. Where Barabási et al. analyzed the effect of missing past using synthetic simulation

data, Leskovec et al. use a real dataset, known to have a missing past with unknown structure, in order to

determine what the impact of the missing past would be. They used the following experiment to validate

that the trend they observed in the effective diameter graph measure was not an artifact of the observation

process (note that t = 0 corresponds to the start of observations in the quotation below, not to the start of

the process as in our notation):

We pick some positive time t0 > 0 and determine what the diameter would look like as a function

of time if this were the beginning of our data. We then put back in the nodes and edges from

before time t0 and study how much the diameters change. If this change is small – or at least if

it does not affect the qualitative conclusions – then it provides evidence that the missing past is

not influencing the overall result [Leskovec et al., 2007].

We can now illustrate how simulations with synthetic data can shed light on the efficacy of the test

described above. A well-known network generation model is the preferential attachment, which we describe

in more detail subsequently in Section 2.3.2, and which is known to generate graphs with a slowly growing

diameter (see Section 2.1.3 for definition). Starting with an initial seed graph of a single vertex, we use

the preferential attachment model to generate a random ‘ground truth’ growing citation network. After an

arbitrary number of timesteps t0, we simulate the start of the observation process. Specifically, the entire

structure of the network prior to t0 is considered to be the missing past and censored, but additions to

its structure are observed and aggregated into a growing graph. We can then compare the value of some

measure M , here the effective diameter, on the full ground truth network and the truncated, mising past

network. This allows us to measure the impact of different amounts of missing past.

Figure 2.3 shows the ground truth for the d90 (effective diameter) measure over time for the true dataset

and the measured, missing past network. In this instance, the effect of the missing past is extremely

significant – where the ground truth network shows a slowly increasing diameter, the missing past network

would suggest that the diameter is rapidly decreasing over time. The inference we make about the change in

the structure of the underlying process is therefore an artifact of the structure of the missing past network and

vertex re-discovery. This essentially reproduces the results of the experiment conducted by Barabási et al. ,

using effective diameter as the measure of interest instead of average shortest path length [Barabási et al.,

2002].
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Figure 2.3: The effective diameter over time in a synthetic preferential attachment network, the observed
trend after an initial portion is censored to simulate the missing past, and the trend produced by a ‘Post-t0’
validation experiment

We then conducted the experiment described by Leskovec et al. above on the truncated missing past

network, treating it as the observed dataset, and knowing the ground truth in advance. We chose an

arbitrary time greater than t0 and essentially repeated the procedure of truncating the network before that

time. The ‘Post-t0’ validation experiment used by Leskovec et al. intuitively states that if the trend in the

missing past network and the ‘Post-t0’ are comparable, then the trend in the missing past network and the

ground truth are also comparable. However, we find that the trend resulting from the validation experiment

is essentially identical to the trend in the missing past network, in agreement with similar observations on real

datasets in [Leskovec et al., 2007]. However, both trends are nonetheless artifacts here of the missing past,

given that the ground truth has a slowly increasing d90. The validation experiment described in [Leskovec

et al., 2007] therefore appears to be limited in its ability to discern a spurious trend from a representative

one, as shown in Figure 2.3.

We use the same methodology in combination with other network growth models and graph measures

to estimate the impact of various amounts of missing past data (and thus vertex re-discovery). Figure 2.3

shows the output of a single random trial for clarity, but in general, we are interested in the expected trend

of a measure M in the presence of missing past data, over many random trials. In the next subsection, we

describe the stochastic network growth models we will use in our empirical analysis in Section 2.3.3.

2.3.2 Network growth models

A network growth model can be viewed as a probabilistic algorithm that adds nodes and edges to a graph,

driven by random noise. A full review of network growth models is beyond the scope of this thesis, but we

describe a few key models that will be used here. For a comprehensive survey of network growth models,

the reader is referred to [Chakrabarti and Faloutsos, 2006,Chakrabarti et al., 2010].

Definition 2.3.1. Network growth model. A network growth model accepts a graph G = (V,E) as input

and a vector of parameters Θ, and stochastically produces an output graph G′ = (V ′, E′), where V ⊆ V ′

and E ⊆ E′.
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Growth models are generally applied recursively, i.e., an initial seed graph is given to the growth model,

and the output graph becomes the input graph for the next timestep, for a fixed number of timesteps.

Figure 2.4 shows graph layouts of three network growth models for networks of increasing size. The following

are three network growth models that we will consider in this chapter:

1. (Dynamic Random Attachment) This is possibly the simplest network growth model, originally pro-

posed by Callaway et al. [Callaway et al., 2001] to study the properties of randomly growing graphs

relative to classical Erdös-Rényi graphs. The growth process is as follows: at every timestep, a new

vertex is added to the graph, and with constant probability p, two unconnected vertices are connected

with an edge uniformly at random. The observation stream therefore consists of an isolated vertex at

each timestep with probability (1 − p), or an edge and two or three vertices with probability p. In a

variant, we choose an arbitrary pair of vertices for the observation stream instead of an unconnected

pair. In the former version, the missing past simulates vertex re-discovery; in the latter, both vertex

and edge re-discovery. The first version simulates a citation network, and the latter an interaction

network. Finally, since one new vertex is added at each timestep, and the expected number of edges

at time t is pt, the expected average degree over time is constant at 2p.

2. (Preferential Attachment) The Barabási-Albert preferential attachment (PA) model [Barabási and Al-

bert, 1999, Barabási et al., 2002] was one of the first random graph models intended to generate

‘realistic’ graphs. It is based on the basic principle that a vertex that has just joined the network

will randomly connect to an existing vertex with a probability directly proportional to the degree of

the vertex being connected to. While most vertices will end up having a low degree, vertices that

initially have a high degree will continue to rapidly increase in degree, as a mathematical embodiment

of the ‘rich-get-richer’ adage. Remarkably, this simple game generates networks with many of the

graph-theoretic properties observed in real networks; for example, a skewed degree distribution of ver-

tices, and a small average shortest path length [Bollobás et al., 2001,Newman, 2003,Boccaletti et al.,

2006]. Furthermore, the PA model is expected to generate graphs with a slowly growing diameter,

i.e., either as Θ(log(V )) or O(log(log(V ))) depending on the parameters [Bollobás and Riordan, 2004].

The version of the PA model we consider here was presented as a model of bibliographic co-authorship

networks by Barabási et al. [Barabási et al., 2002]. Starting with an initial seed graph G0 and two

integer parameters a > 0 and b > 0, the following describes the simplified PA growth model applied to

the graph at each timestep t:

(a) A new node u is added to the graph and connected to a existing vertices, where the probability

of linking to vertex v is defined as

P (u, v) =
N(v)

∑

i∈V N(i)

where N(v) is the degree of vertex v.

(b) b links are created between existing vertices in the graph, where the probability of a link between

vertices i and j is defined as

P (i, j) =
N(i)N(j)

∑

s,m∈V,s 6=m N(s)N(m)
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As a variant, in the second step of the algorithm above, if we do not distinguish between already

unconnected and connected vertex pairs, the missing past effectively simulates edge as well as vertex

re-discovery. Otherwise, only vertex re-discovery is simulated. Note that the version of the algorithm

given above would have an expected diameter that grows as Θ(log(V )) where V is the number of

vertices. At each timestep, one new vertex and (a + b) new edges are added to the graph, so the

expected average degree over time is constant at 2(a + b). If resampling of edges is allowed in the

second step, then at most (a + b) new edges are added at each timestep, and the average degree

converges from below to 2(a + b). Since the average degree converges to a constant, the Densification

Power Law is not applicable.

3. (Forest Fire) The Forest Fire model was proposed by Leskovec et al. [Leskovec et al., 2005] as an

alternative to network growth models like Preferential Attachment, which generate graphs with a slowly

increasing diameter and constant average degree. Instead, Leskovec et al. used the growing network

methodology and found that the networks they analyzed showed a rapidly decreasing diameter over

time, and superlinearly increasing average degree, which would invalidate Preferential Attachment as

a dynamical model for growing networks. They proposed the Forest Fire model to generate graphs

with a decreasing diameter and superlinearly increasing average degree.

Although determining the expected properties of the Forest Fire model appears to be analytically

intractable, it is able to generate graphs with the properties mentioned above for specific parame-

ter values described in [Leskovec et al., 2007]. Algorithmically, it can be seen as a form of copying

model [Kumar et al., 2000], where new nodes pick a set of ambassadors and then probabilistically link

to their neighborhoods. Given two probability parameters p and r, the graph growth algorithm at each

timestep adds a new vertex u as follows [Leskovec et al., 2007]:

(a) u chooses an ambassador node v and links to it.

(b) Let x and y be two geometrically distributed random numbers with parameters (1−p) and (1−rp).

u randomly links to (x− 1) in-link vertices of v and (y − 1) out-link vertices of v, excluding any

that have already been visited in the current iteration.4

(c) The second step repeats at all nodes that have just been linked to, until the process dies out.

Consider the output of iterating any of the network growth models above. Recall that we start with

an initial seed graph, possibly empty, which is designated G0 = (V0, E0). At each timestep, the network

growth model generates an observation graph G′ = (V ′, E′), which is added to the input graph to produce

the output. Note that V ′ and E′ can have elements in common with the input graph, but are not necessarily

strict supersets or subsets of it.

Let Grow be such a network growth model:

Grow : G× Θ → G′

where G is the input graph, Θ is set of model parameters, and G′ is the output observation graph describing

changes made to the input graph. Let C be the number of initial timesteps to censor to simulate the effect

4The -1 constants on x and y are not mentioned in the description of the algorithm, but are critical for reproducing the
results in [Leskovec et al., 2005,Leskovec et al., 2007].
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Figure 2.4: Examples of the output of network growth models for graphs of 10, 15, and 20 nodes: forest-fire
(top row), preferential attachment (middle), random attachment (bottom).

of re-discovery. Starting with timestep 0 and a seed graph G, we iterate the network growth model in the

following manner to generate the ground truth network:

O1 = Grow(G,Θ) G1 = G ∪O1

O2 = Grow(G1,Θ) G2 = G1 ∪O2

...

This yields the underlying (ground-truth) network:

〈G〉 = 〈G,G1, ...〉

We then censor the first C timesteps to generate the observed, aggregated network 〈G+〉 (see Definition 2.1.2).

〈G+〉 = 〈OC , OC ∪OC+1, OC ∪OC+1 ∪OC+2, ...〉

Depending on the model, the occurrence of some vertices in Ot, t ≥ C will be caused by re-discovering

a pre-existing vertex. This could happen, for example, when a new edge connects to a vertex that exists

in the censored part of the network. In some network models, existing edges can be re-activated, so there

is also the possibility than an edge in some Ot for t ≥ C is a re-activation of an edge in the censored part

of the network. This describes a very common ‘missing-past’ scenario in network data collection, and it is

important to keep in mind that the properties of interest are those of the underlying network 〈G〉.
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2.3.3 Empirical results

The experimental methodology for simulating the missing past is simple: iterate a network growth model for

C timesteps to generate a ground truth network, and then ‘fork’ its evolution into a secondary, “missing past”

network that only receives updates to the ground truth network from timestep C onwards.5 For example,

if the ground truth network receives edge (u, v) at timestep C + 1, the missing past network at the same

timestep contains only the edge (u, v). The larger the value of C, the larger the missing past network, and

depending on the graph model, the higher the prevalence of the re-discovery process in uncovering censored

vertices. We might intuitively expect that for small values of C, any difference between the properties of the

ground truth and missing past network would converge to the same value very quickly. By varying C, we

can test this assumption with any network growth model.

For each of the three network growth models described earlier, we started with the simplest seed graph

permissible by the model, generally a single isolated vertex. The growth model was iterated for a total of

1,000 timesteps, with the missing past size ranging from 50 to 250 timesteps in increments of 50 timesteps.

Note that this represents a very small amount of missing past data. In all three models, this equates to a

missing past graph of just 50 vertices. Various graph theoretic properties were measured on both the missing

past and ground truth networks every 10 timesteps. All properties were averaged over 500 random trials.

Shortest paths were computed exhaustively between all reachable vertex pairs using the igraph network

library. We present results in the following subsections for the following model configurations:

1. Random attachment with edge creation probability p = 0.8 (sparse network6).

2. Preferential attachment with a = 2 and b = 2 (similar to [Barabási et al., 2002]).

3. Forest fire with p = 0.35 and r = 0.57 (‘sparse graph’ instance in [Leskovec et al., 2007]).

We report trends in the average shortest path length, effective diameter, clustering coefficient, largest eigen-

value of the adjacency matrix, and the densification exponent of the DPL.

Random Attachment

Figure 2.5 shows various properties of the ground truth network relative to 5 missing past networks. We focus

first on the average shortest path length and the effective diameter, which are both statistics of the pairwise

shortest path length distribution. Even with a relatively small amount of missing data of 50 timesteps, the

trend in the observed dataset is always the opposite of the trend in the underlying network. This is not

only a qualitative difference (increasing vs. decreasing), but also numerically quite a large difference at short

times.

Predictably, as the amount of missing data increases, the observed trend takes longer to converge to

the true trend; with 100 censored timesteps (the second gray trend from the left), the ground truth and

missing past trends appear to be converging in about 1,000 timesteps – which represents more than 10 times

the number of vertices in the missing past. This convergence takes considerably longer with more missing

5In Unix-like operating systems, the fork() system call creates a second concurrent copy of a process. The difference is that
unlike a Unix process, our ‘missing past’ network does not inherit any data from the original ground truth network.

6Note that the edge creation probability is distinct from the edge probability in classical Erdös-Rényi graphs. In the random
attachment growth model, limp→1 E(t) = V (t), which is the classical definition of a sparse graph.
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Figure 2.5: Random attachment network model with p = 0.8: the effect of 5 different amounts of missing
data on the ground truth (empty circles) and missing past (filled circles) networks.

data. For example, with 250 missing past timesteps (and thus, 250 missing past vertices and 250 ∗ 0.8 = 200

edges in expectation), the missing past trend in the average shortest path length is a little less than double

its ground truth value at the end of 1000 timesteps. The effective diameter is almost three times its true

value. Perhaps what is of most concern is that qualitatively, the missing past trends appear to be decreasing,

whereas the ground truth trend is increasing in both cases. The clustering coefficient and principal eigenvalue

appear to be good qualitative approximations even with missing past data. However, the former is a biased

measure that is intrinsically correlated with the average degree, and the latter is known to correlate with

the maximum degree, decreasing their value as dynamic graph characterizations.

Finally, the most surprising finding here is that of the DPL densification exponent α (see Definition 2.1.6).

Recall that α lies strictly between 1 and 2, and that a value greater than 1 indicates that the number of edges

is growing superlinearly relative to the number of nodes. In the random attachment model, the number of

edges is a constant function of the number of nodes, so the DPL is known not to hold in this case. However,

the re-discovery process has the following effect in the early stages of observed network growth: when a new

edge is created between two vertices in the censored graph, the observations show the appearance of two

new vertices and one new edge, instead of one new edge and no new vertices. The number of edges therefore

appear to grow slowly initially, as censored vertices are re-discovered. This manifests in an apparently

super-linear growth of the number of edges compared to the number of nodes over the later portion of the

observation period, whereas the bias is really towards sub-linear growth in the early stages. Unfortunately,

both phenomena can manifest as super-linear fits with regression.

For each missing past network, we used non-linear least-squares regression to fit the Additive DPL

equation and linear least-squares on log-transformed data to fit the Multiplicative DPL equation. Figure 2.5e

shows the densification exponent α for each missing past dataset, with C = 0 corresponding to the ground
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truth dataset. In all cases, α is greater than 1, apparently suggesting that densification is taking place in the

underlying system when we know that this is not the case. Larger amounts of missing past lead to higher

densification exponents using the Additive DPL equation; the Multiplicative DPL appears to level off and

then decrease. This can be explained by the re-discovery process being more likely to uncover nodes that

already existed in the censored portion of the network due to its increased size.

Preferential Attachment

We now consider a network that is growing according to the Preferential Attachment model, which is a

more realistic than the random attachment model analyzed in the previous section. We conduct a similar

set of experiments as with the random attachment model by censoring a portion of the initial output of the

network growth model.

The results are quite similar to those of the random attachment model. Figure 2.6 shows measurements

for the ground truth and missing past networks of various sizes. As with the random attachment model, the

missing past networks exhibit false trends in both the average shortest path length and effective diameter

over time. However, they are significantly more pronounced than in the random attachment model, both

qualitatively as well as quantitatively. Although the trend in the underlying networks is growing slowly,

as predicted by theoretical results [Bollobás and Riordan, 2004], the observed network exhibits an initially

sharply decreasing effective diameter, followed by slow convergence to the true trend. Thus, we can conclude

that the spurious trends in the random attachment model were not solely the result of the random network

structure. The clustering coefficient measure also exhibits a false trend at short times, but converges to the

true trend quickly.

The DPL densification exponents α also show strong variability with the amount of missing past data.

Particularly, the Additive DPL equation appears to exhibit a linear dependence on the size of the missing

past network. However, it is unlikely that this property, even if it holds generally, can be used to determine

the size of the missing past from the densification exponent; that would only be applicable if the underlying

network was truly growing according to preferential attachment. Once again, two sources of concern are the

strong dependence of α on the missing past size, and the very fact that α indicates densification with a very

small amount of missing past when the ground truth network does not possess that property.

Forest fire

Finally, we analyze a configuration suggested by the authors of the Forest Fire model. Since the model

appears to be analytically intractable [Leskovec et al., 2007], we use a parameter set that has been empirically

shown to generate a growing sparse network with a slowly increasing effective diameter. We also adjusted

the timescale used for the experiments to match that in the original paper to allow for an easy comparison

of behavior; it is about 10 times longer than the timescale used for the other experiments. Since the Forest

Fire model is a type of ‘copying’ model [Kumar et al., 2000], we might expect different results than the

random and preferential attachment models. Figure 2.7 shows results for the ‘sparse’ configuration of the

Forest Fire model.

The trends in path length statistics are somewhat unusual: the ground truth network has a slowly

increasing diameter, much like the preferential and random attachment models, the effective diameter in

the missing past networks in Figure 2.7b are essentially constant after a brief initial period. This can be
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Figure 2.6: Preferential attachment network model: the effect of 5 different amounts of missing data on the
ground truth (empty circles) and missing past (filled circles) networks.

explained as a facet of the forest fire graph generation process. When a vertex is revealed in the missing

past network, it burns edges and thus re-discovers old vertices in the ground truth network. In practice, this

‘forest fire’ process (described in Section 2.3.2) burns out very quickly, and thus the re-discovered vertices

are short distances away from the new vertex, keeping the effective diameter low. When the network is large

enough, this effect becomes insignificant, and the trend manifests as an almost constant effective diameter.

This is therefore a case when the data suggests a steady state where there is none.

Other properties not based on shortest paths display errors or consistency similar to the random and

preferential attachment models: the clustering coefficient at short times shows a trend contrary to the

ground truth, and the principal eigenvalue tracks its ground truth value qualitatively, if not quantitatively.

The densification exponent, however, shows the same dependence upon the amount of missing past as the

other models, ranging between approximately 1 and 1.3 for a ground truth value near 1. We note that

the dependence of α resembles the trend in the random attachment model (Figure 2.5), suggesting that

the dependence of the bias in certain cases might be related to the relative sizes of the missing past and

observed networks. Whether this is a universal feature, and if the size of the missing past network might be

computable from it, is a question for future research.

2.4 Sensitivity of measured trends in interaction networks

In the previous section, we asked how sensitive certain measures are on growing citation networks, given

the presence of various amounts of missing past data. In this section, we ask if the same trends in the

measures of growing interaction networks are meaningful. Recall that in an interaction network there is an

underlying dynamic process that causes entities to interact with each other over time, and that we discover
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Figure 2.7: Forest fire model with p = 0.35 and r = 0.57: the effect of 5 different amounts of missing data
on the ground truth (empty circles) and missing past (filled circles) networks.

the structure of the network only through observing these interactions. This is an appropriate model for

many communications and information networks, such as phone call, e-mail, physical proximity, and instant

message logs. For example, in the case of e-mail networks, if a user never sends a single e-mail, their existence

will generally not be noted on transmission logs, and conversely a user’s firstobserved e-mail transmission

would suggest true network growth to the observer, regardless of whether the observation contains the first

instance of that edge.

One of the assumptions in measuring the change in a growing interaction network is, naturally, that the

underlying network is truly changing with respect to some measure M . If this were not the case, then any

trend in M over time would simply be a reflection of the convergence of a sampling process to the limiting

value of M . It would be a reflection of the sampling process, a product of interaction network dynamics and

missing past data. In fact, at least one study uses the method described here to study the convergence of

various network measures to limiting values [Latapy and Magnien, 2008]. In this section, we expand upon

an elegant conceptual framework proposed by [Pedarsani et al., 2008] called edge sampling to ask if a given

dynamic network dataset is growing at all. In other words, is there a plausible dynamic sampling process

operating on an unchanging network that can statistically explain a trend in measure M when M is truly

constant?

Definition 2.4.1. (Edge Sampling) The basic assumptions of edge sampling are as follows:

1. There is a fixed or slowly changing (relative to the size of observations) underlying graph.

2. Edges in this underlying graph randomly ‘activate’ according to a sampling distribution at each

timestep, and are thus discovered by the observer.

Since we are assuming a steady state with respect to measure M , under a consistent sampling process
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and enough data, we can treat the final aggregate static network obtained from a sequence of observations

as a good approximation of the underlying system. We then specify an edge sampling model to randomly

activate edges from the aggregate graph at each timestep of observations, simulating interactions (and thus

observations) along an unchanging graph. By starting with a real dataset and specifying an edge sampling

model, we can perform many Monte Carlo edge sampling simulations and determine the expected trend over

time in any graph theoretic property, as well as its sampling distribution, as a form of statistical permutation

test [Good and Wang, 2005]. Although extremely computer intensive when operating on large networks,

permutation tests have a long history and are extremely powerful analytical tools.

In the next subsection, we describe the basic edge sampling model proposed in [Pedarsani et al., 2008]. In

Section 2.4.2, we describe four additional edge sampling models to satisfy the second part of Definition 2.4.1.

Since permutation methods are very computationally intensive, we report results on a number of smaller

datasets:

1. Enron (internal). All e-mail traffic between @enron.com e-mail addresses, quantized by month.

2. IMDB Photos. Celebrities photographer together, quantized by month.

3. DBLP-FOCS. A small sample of the DBLP digital bibliographic database, focusing on co-authorship

in the Foundations of Computer Science conference. Note that the earlier years have significant missing

data issues. The quantization timestep is one year.

4. HEP-Th. Citations in high-energy physics publications, quantized by month.

2.4.1 Uniform Edge Sampling

The basic edge sampling model assumes an underlying graph G = (V,E), from which edges are ‘activated’

at each timestep uniformly and independently at random with a fixed probability pe [Pedarsani et al., 2008].

Vertices are only discovered as a consequence of an edge activating; thus, isolated vertices of degree 0 are

never discovered. We present a minor modification of the edge sampling model to a temporal setting here.

Let v(t) and e(t) be the number of nodes and edges that have been discovered from the underlying graph

at time t, with v(0) = 0 and e(0) = 0. At each timestep t ≥ 1, each edge in the underlying graph activates

with fixed probability pe independent of all other edges, and is therefore discovered if it has not previously

activated. The number of activations of an edge over t timesteps is therefore binomially distributed as

Bin(t, pe), and the probability that the edge does not activate at all after t timesteps (and thus remains

undiscovered) is qe:

qe = (1 − pe)
t

At time t, the expected number of discovered edges e(t) is the mean of a second binomial distribution with

probability (1 − qe) for E trials.

E[e(t)] = E · (1 − qe)

= (1 − (1 − pe)
t)

V ar[e(t)] = E · (1 − (1 − pe)
t)(1 − pte)

35



A node is discovered if one of its adjacent edges fires, and remains undiscovered if all of its edges do not

fire. The probability of a node of degree d remaining undiscovered at each timestep is therefore qde . After t

timesteps, this probability is (qde )t. Conditioning on node degree, where fD(d) is the proportion of nodes in

the graph with degree d, the probability of a node not being discovered after t timesteps is given by:

qv(t) =

V−1
∑

d=1

qd·te · fD(d)

Thus, the expected number of nodes v(t) at time t is:

E[v(t)] = V · (1 − qv(t))

= V · (1 −
V−1
∑

d=1

qd·te · fD(d))

Given the size (number of vertices and edges) and empirical degree distribution of an ‘underlying’ network,

and a fixed sampling probability pe, the edge sampling model lets us analytically determine the number of

vertices and edges we can expect to see at each timestep in a dynamic discovery process. This, in turn,

allows us to theoretically determine if we can expect to see edge densification for a given value of the

sampling parameter pe. It was shown that this model leads to densification in graphs with a power-law-like

distribution [Pedarsani et al., 2008]. Analytically determining more complex properties, such as the average

shortest path length, quickly becomes difficult7, but can be investigated using Monte Carlo analysis.

2.4.2 Other edge sampling models

We describe four additional edge sampling models to be used for hypothesis testing. Each model attempts

to preserve some statistic of the observed dataset.

Size-preserving edge sampling

The size-preserving (SP) edge sampling model samples |Et| edges from the static graph at each timestep,

independently and uniformly at random without replacement, where |Et| is the number of edges actually

observed in the dataset at time t. This model effectively stipulates that there is an unknown process governing

the number of edges observed at each timestep (an observation or sampling process), but that within each

timestep, edges are activated uniformly at random from the underlying network (the process governing

interactions in the underlying system). Note that edges are chosen without replacement for generating the

observation for a particular timestep, but with replcement across timesteps.

Figure 2.8 shows the distribution of edge multiplicity values (i.e., , the distribution of the number of times

each edge was observed in the dataset) for three datasets that exhibit edge multiplicity. A notable feature of

all three distributions is their heavy skew: most edges are observed only once within the observation period,

but a significant number are observed multiple times. In the same figure, we also show fitted distributions

7As an example, the proof techniques used to analytically determine the diameter of a scale-free graph are far from triv-
ial [Bollobás and Riordan, 2004].
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Figure 2.8: Distribution of edge multiplicity (also known as support) in various datasets, along with several
common fitted distributions, shown on a doubly logarithmic scale. Although the data is heavily skewed,
none of the distributions appear to be a good fit.

to the data: a power-law fit using the methods described by [Clauset et al., 2009], and exponential and

log-normal distributions fitted using maximum likelihood estimators.

In the SP edge sampling model, each edge has the same probability of being chosen at a particular

timestep, although with different probabilities across timesteps, so the distribution of edge multiplicities is

Poisson-binomial [Wang, 1993], which is a general case of the binomial distribution. If E is the number of

edges in the aggregate static network, and Et the number of edges observed in the dataset at time t, then the

probability of picking an edge at any timestep is Et/E. Since this is generally small relative to the number

of timesteps, the Poisson-binomial distribution is well-approximated by a Poisson distribution [Chen and

Liu, 1997], which can appear as a skewed distribution qualitatively similar to the empirical distributions in

Figure 2.8. Although a Poisson distribution does not yield a good fit to the data in Figure 2.8, it can serve

as a useful first approximation.

Degree-preferential edge sampling

Similar to the preferential attachment growth model [Newman, 2001b], we propose the degree-preferential

(DP) discovery model as a refinement of the SP edge sampling model. In the DP model, Et edges are still

picked at each timestep, but not uniformly at random. Instead, the probability of an edge being sampled

is directly proportional to the product of the degrees of its vertices, i.e., edges between nodes prolific in

connections are more likely to be re-activated. Specifically, the probability of sampling an edge e = (u, v) at

any timestep is given by:

p(euv) =
d(u) · d(v)

∑

i6=j d(i) · d(j)
(2.3)

where d(i) is the degree of vertex i. Algorithmically, sampling Et edges without replacement from a graph

according to Equation 2.3 can be carried out efficiently using the weighted random reservoir sampling (WRS)

algorithm described in [Efraimidis and Spirakis, 2006].

Intuitively, the DP model still stipulates some unknown process dictating the number of edges observed

at each timestep, but a slightly different underlying interacting process that governs edge activations. In the

DP model, being connected to a high degree vertex increases a vertex’s chance of generating an activation at
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any given timestep. Furthermore, interactions between two connected high-degree vertices are more likely

than between a pair of low-degree vertices.

Rate-preserving edge sampling

The rate-preserving (RP) edge sampling model samples each edge independently at each timestep with

probability equal to its estimated probability from data, i.e., the edge multiplicity divided by the total

number of timesteps. This is perhaps the most realistic of the edge sampling models presented here. Although

it makes a strong independence assumption, it reproduces a number of statistics of the original dataset, such

as the distribution of edge multiplicities. For an edge with multiplicity c in the dataset, its multiplicity under

the RP model is a binomially distributed random variable with success probability c/t.

Size and Count-preserving edge sampling

Similar to the size-preserving sampling model, the size and count-preserving (SCP) sampling model preserves

not just the number of edges observed at each timestep in the original dataset, but also the total number of

activations of each edge, i.e., edge multiplicity. Unlike the RP model, however, the multiplicity of each edge

is a constant c instead of a random variable binomially distributed with mean c.

Preserving both the number of edges at each timestep as well as the total count of each edge is a

non-trivial problem. We use a common Markov Chain Monte Carlo (MCMC) approach to perform this

randomization, which has been previously used to randomize single graphs while preserving properties like

the average path length [Hanhijärvi et al., 2009], and originally developed to generate random bipartite

perfect matchings [Broder, 1986].

The approach involves representing each possible satisfying dynamic network as a node in a Markov chain

with equiprobable transitions to all nodes that can be reached by performing a single swap operation. In

our context, this operation swaps two distinct edges in different timesteps such that the total count of edges

in each timestep remains the same before and after the swap. By iterating this Markov chain, we eventually

reach the limiting uniform distribution and have successfully randomized the network subject to the size-

and count-preserving constraint.

In practice, the Markov chain is iterated until it mixes before being used, but it is difficult in general

to tell when the limiting distribution has been reached; in [Hanhijärvi et al., 2009], a constant number of

iterations was used. We run the chain forward for a number of iterations equal to the total number of edge

occurrences before using the randomized network, and then use each randomized network as the starting

point for subsequent randomizations.

2.4.3 Empirical results

Recall the that the four discovery models we proposed were: rate-preserving (RP), size-preserving (SP),

degree-preferential (DP), and size- and count-preserving (SCP). Given the original dataset, none of these

edge sampling models require any parameters. We ran each model between hundreds and thousands of times

(depending on the size of the dataset) on each of the five datasets described earlier. For each run, we sampled

edges from the final aggregate static network for the same number of timesteps as the original dataset, and

recorded the values of various graph properties at each timestep. From these values, we can estimate the
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Figure 2.9: The effective diameter over time of various datasets (solid line), and a band of two standard
deviations around the expected trend under each edge sampling model.
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mean property value at each timestep under a given edge sampling model, and thus the mean trend, as well

as the variance and other statistics. Intuitively, if the edge sampling models are bad fits, the mean trend

will be far from the actual observed trend.

Figure 2.9 shows the mean effective diameter d90 of each edge sampling model, along with a band showing

two standard deviations. Closed circles represent the original value of the effective diameter measured in

the dataset at each timestep. The DBLP-FOCS dataset, shown in Figure 2.9a, is a good example of a

reasonable fit to an edge sampling model. The SP and SCP appear to be very good fits to the observed

data. In both cases, the qualitative trend from the edge sampling model follows the trend observed in the

data quite closely. Furthermore, points in original dataset are quite often within two standard deviations of

the edge sampling trend. The DP model yields a slightly worse fit, with the d90 value ending higher than

the observed data. Fits for the other datasets are not as close as the DBLP-FOCS dataset, but all show the

same qualitative trend of a decreasing effective diameter.

Recall that one interpretation of the edge sampling model is that the underlying network is not changing

at all; edges are merely being activated at each timestep and discovered. This is exactly the algorithm used

for the sampling process – edges are sampled from a fixed, unchanging, underlying network. In spite of

this, the trend suggested by the measurements is that the effective diameter in the underlying network is

decreasing. The spurious trends are not insignificant either, and all follow the same decreasing trend, which

might suggest a universal phenomenon when it is demonstrably an artifact.

2.5 Summary and suggestions

In this chapter, we described two common methods for measuring the properties of dynamic networks over

time, and summarized the trends in common properties reported on multiple datasets. We also classified

dynamic network data into two broad classes: citation networks and interaction networks, depending on

whether the change in the structure of the underlying process is either directly observed or measured through

a proxy of interactions occurring on the network, with possibly independent dynamics. Most importantly,

we systematically analyzed whether trends in common measures can be attributed to true change in the

underlying system, or explained as either missing past artifacts (citation networks) or artifacts introduced

by the dynamics of interactions (interaction networks).

There is an inherent bias in the growing network methodology for citation network measurement at short

times, particularly in networks with a missing past. This bias can be understood as being caused by two

sampling processes at play in the collection of network data: re-discovery of pre-existing vertices, and true

growth in the underlying network. Prior studies assumed that all observations could be attributed to growth

of the underlying network. In most cases, however, the sampling process is doubly stochastic as explained,

with both discovery and growth playing a role. Very small amounts of missing past data can manifest as

significantly erroneous trends in observations. Using synthetic data generated by well-known random graph

models, we were able to show that: densification (super-linear growth of edges relative to nodes) can manifest

in networks that are not densifying, effective diameter can manifest as sharply decreasing in networks with

a slowly increasing effective diameter, and these biases cannot be detected by withholding a portion of the

observations.

Similarly, trends in common measures in a number of real interaction network datasets can be explained
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using simple random models of interactions occurring along an unseen graph structure that we want to

measure. The change in the graph is not directly observable, but we assume that the observation of an

interaction indicates the existence of an edge between the adjacent vertices. New interactions occurring

along freshly created paths eventually reveal those paths to the observer, but conversely, there is no way to

tell if a newly discovered path is actually new. Thus, we hypothesize that there might be little or no growth

in the underlying network, and the observations are purely a product of discovering pre-existing vertices and

edges. Using randomization tests, the expected trend under this hypothesis matched real data qualitatively,

and in many cases, quantitively as well, within acceptable statistical bounds. Using the growing network

method on an interaction network therefore reveals a trend that can also be interpreted as the convergence

of measure M to its limiting value under a steady state hypothesis for M .

In the rest of this section, we focus on suggestions for future research.

2.5.1 Choosing an appropriate network representation

Recall that we had previously been able to classify network datasets into two categories: interaction networks,

where the observations at any timestep represent instantaneous associations between vertices that can re-

occur in the future, and citation networks, where observations represent the one-time formation of permanent

links. We deal with each separately:

• (Interaction networks) A fully dynamic or dynamic interaction network with some form of smoothing

or vertex and edge decay might be the most appropriate representation (see Section 2.1). If vertex or

edge removal is a characteristic of the underlying system, then one of the following two methods could

be used to reduce noise in the time series of observations:

1. (Weighting) Use a decay function to weight edges, and then either use weighted graph mea-

sures [Newman, 2001a, Barrat et al., 2004, Newman, 2004, Zhang and Horvath, 2005, Barthelemy

et al., 2005], or remove vertices and edges that have fallen below a threshold weight at any

time8 [Kossinets and Watts, 2006,De Choudhury et al., 2010].

2. (Smoothing) An alternative to weighting graphs is to expand the timescale to consist of larger

timesteps in order to reduce noise. For example, if the observations of a network are at the

resolution of a day, one could consider a dynamic network that aggregates a month of observations

into a single timestep. Furthermore, one could consider a sliding window over this observation

stream instead of a shifting-window quantization. A number of studies have looked at the effect of

different timescales on network properties [Delvenne et al., 2010,De Choudhury et al., 2010,Eagle

and Pentland, 2006], and there have been at least two algorithms proposed to find meaningful

timescales for a time series of graphs [Sun et al., 2007,Sulo et al., 2010].

• (Citation networks) Although growing networks can be an appropriate representation for citation

networks, the missing past issue introduces a vertex discovery process. In this case, we can only

suggest that the network is allowed to stabilize to the point where new observations comprise a smaller

portion of the aggregated network. This eliminates the noisy initial portion of the network when the

8A recent arXiv working paper suggests that this method might be too noisy in general [Thomas and Blitzstein, 2011].
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Figure 2.10: The number of previously unobserved edges and vertices (insets) at each timestep relative to
the size of the aggregated network at that timestep for four real datasets.

discovery process is most likely to have a significant impact. Note that taking such a precaution is a

heuristic; it does not solve the missing past problem.

Figure 2.10 shows the proportion of new edges and vertices introduced at each timestep as a function

of the aggregate growing graph size at that timestep. As expected, new vertices and edges comprise a

smaller portion of the aggregate graph as time progresses, so a simple heuristic might be to wait until

new observations comprise no more than a small portion of the aggregate graph before considering

measurements. This is similar in principle to the initial ‘burn-in’ period of many iterative statistical

algorithms, where the output of an algorithm is discarded until the underlying model has reached

stationarity [Hastie et al., 2001, p.280]. Setting this threshold arbitrarily at 5% would entail dropping

approximately the first 20 measured data points of the patent citations dataset [Leskovec et al., 2007],

the first 40 timesteps of the HEP-Th co-authorship dataset [Leskovec et al., 2007], and the first 20

timesteps of the IMDB photos dataset [Lahiri and Berger-Wolf, 2008].

An entirely different solution would be to abandon the graph-theoretic representation of networks for one

that is perhaps less sensitive to noise and missing past effects. As we mentioned earlier, spectral density plots

have been proposed as a concise and effective way to look into the structure of networks [Banerjee and Jost,

2009], but doing so over time poses both a mathematical and visualization challenge. Alternatively, latent

space models embed the nodes of a social network into a vector space, using edges to define some form of

distance function [Hoff et al., 2002]. These models have been extended to dynamic networks as well [Sarkar

and Moore, 2005], but represent a fundamentally different direction than classical graph theory.

2.5.2 Equilibrium assumption

Recall that a fundamental assumption in static network analysis is that the physical system is in equilibrium

with respect to graph theoretic properties, so taking a large enough sample of the network yields represen-

tative approximations to the properties of the underlying system. On the other hand, one of the tenets of

growing network analysis is that the properties of the underlying system are changing over time, as evidenced

by the trends in graph theoretic properties over time.

As a telling example of this difference, consider two lines of research that use the same methodology,

report essentially the same observations, but start with different assumptions and come to very different

conclusions. Latapy and Magnien [Latapy and Magnien, 2006] ask how large a network sample must grow

until the properties of the aggregated network reach a steady state. Their methodology samples some
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Figure 2.11: An illustration of the running average of a growing pool of random variates drawn from various
uniform random distributions, as an analogy to the difficulty of detecting nonstationarity with the growing
network methodology at short times. The task is akin to inferring the behavior, not the value, of the dotted
line (ground truth) from a single growing pool of observations (solid line).

networks over time, only because this is a natural order for those datasets, and shows graph-theoretic

measurements that eventually converge to a fixed value. For measurements that converge, the authors

conclude that the sampling process was effective and the steady-state values of the underlying network have

been discovered. On the other hand, classic studies of growing networks use the same methodology to infer

how the properties of the underlying network are changing over time [Barabási et al., 2002, Leskovec et al.,

2005]. In both cases, we see qualitatively identical plots of the same property (e.g., average shortest path

length over time in an aggregated network), but diametrically opposite inferences about the underlying

network.

So are our observations successively converging to the underlying network, which is in a steady state,

or are each of our observations representative enough to allow us to infer that the underlying network

is changing? There is unlikely to be a general answer to this question, since one can imagine different

situations in which each is plausible. The methods we have presented earlier in this chapter allow us to

explicitly construct some of these situations. Thus, the equilibrium assumption, or lack thereof, needs to

be justified. Consider the numerical analogy to growing network analysis shown in Figure 2.11. In each

figure, a process is emitting uniformly distributed random numbers, either with a constant expectation or

a trend as shown by the dotted line. The solid line shows the running average of the observations, similar

to how growing networks accumulate observations into a single graph. The solid line at each time point

represents the best estimate for the expectation of the process. In an alternative interpretation of the solid

line, the expectation of the underlying process is either roughly constant (leftmost figure), or slowly growing

(middle and right figures). However, the ambiguity of the setup and the actually measured solid line makes it

difficult to infer the behavior of the dotted line. Neither is correct in all cases, so the observed measurements

themselves cannot be used as a justification for assuming equilibrium or non-equilibrium at short times.

2.5.3 Dynamic measures

Finally, we note that interaction networks appear to be more common than citation networks. Since interac-

tion dynamics can play a big part in our view of the underlying physical system, it might be advantageous to

develop measures that directly extract information about the dynamics of the process, rather than measuring

properties of a static structure at fixed time intervals. This is the motivation for the techniques developed
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in the remaining chapters of this thesis.
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